Simulation Techniques
Advanced techniques for building realistic and effective simulations with Starkbiter.
Agent-Based Modeling
Heterogeneous Agents
Create agents with different behaviors and strategies:
#![allow(unused)] fn main() { // Conservative trader let conservative = Agent::new("conservative", ConservativeBehavior { risk_tolerance: 0.3, trade_frequency: Duration::from_secs(3600), }); // Aggressive trader let aggressive = Agent::new("aggressive", AggressiveBehavior { risk_tolerance: 0.9, trade_frequency: Duration::from_secs(60), }); world.add_agent(conservative); world.add_agent(aggressive); }
Adaptive Agents
Agents that learn and adapt:
#![allow(unused)] fn main() { struct AdaptiveBehavior { strategy: Box<dyn Strategy>, performance: PerformanceTracker, } impl Behavior for AdaptiveBehavior { async fn execute(&mut self, world: &World) -> Result<()> { // Execute strategy let result = self.strategy.execute(world).await?; // Track performance self.performance.record(result); // Adapt if performance is poor if self.performance.is_underperforming() { self.strategy = self.select_better_strategy(); } Ok(()) } } }
Economic Modeling
Supply and Demand
Model market dynamics:
#![allow(unused)] fn main() { struct MarketSimulation { suppliers: Vec<Agent>, consumers: Vec<Agent>, price_discovery: PriceDiscovery, } impl MarketSimulation { async fn simulate(&mut self, blocks: u64) -> Result<PriceHistory> { for _ in 0..blocks { // Suppliers offer let supply = self.aggregate_supply().await?; // Consumers bid let demand = self.aggregate_demand().await?; // Clear market let price = self.price_discovery.clear_market(supply, demand); // Execute trades self.execute_at_price(price).await?; } Ok(self.price_discovery.history()) } } }
Liquidity Modeling
Simulate realistic liquidity conditions:
#![allow(unused)] fn main() { struct LiquidityProvider { target_tvl: u64, rebalance_threshold: f64, } impl Behavior for LiquidityProvider { async fn execute(&mut self, world: &World) -> Result<()> { let current_tvl = self.get_tvl(world).await?; let imbalance = (current_tvl as f64 - self.target_tvl as f64).abs() / self.target_tvl as f64; if imbalance > self.rebalance_threshold { self.rebalance(world, current_tvl).await?; } Ok(()) } } }
Monte Carlo Simulation
Run many simulations with random parameters:
#![allow(unused)] fn main() { async fn monte_carlo_analysis( scenarios: usize, ) -> Result<Statistics> { let mut results = vec![]; for i in 0..scenarios { // Create environment with random seed let env = Environment::builder() .with_seed(i as u64) .build() .await?; // Run simulation let outcome = run_simulation(env).await?; results.push(outcome); } // Analyze results Ok(Statistics::from_results(results)) } }
Scenario Analysis
Best Case / Worst Case
#![allow(unused)] fn main() { async fn scenario_analysis() -> Result<ScenarioResults> { let universe = Universe::new(); // Best case let best = create_optimistic_world().await?; universe.add_world("best", best); // Expected case let expected = create_realistic_world().await?; universe.add_world("expected", expected); // Worst case let worst = create_pessimistic_world().await?; universe.add_world("worst", worst); universe.run_all().await?; Ok(universe.compare_outcomes()) } }
Parameter Sweeps
Test across parameter ranges:
#![allow(unused)] fn main() { async fn parameter_sweep() -> Result<HeatMap> { let mut results = HeatMap::new(); for fee in [0.001, 0.003, 0.005, 0.01] { for slippage in [0.001, 0.005, 0.01, 0.05] { let env = Environment::builder().build().await?; let protocol = deploy_with_params(&env, fee, slippage).await?; let profit = simulate_trading(&protocol).await?; results.insert((fee, slippage), profit); } } Ok(results) } }
Time Series Analysis
Price Processes
Simulate realistic price movements:
#![allow(unused)] fn main() { struct GeometricBrownianMotion { mu: f64, // drift sigma: f64, // volatility dt: f64, // time step } impl GeometricBrownianMotion { fn simulate(&self, steps: usize, initial_price: f64) -> Vec<f64> { let mut prices = vec![initial_price]; let mut rng = thread_rng(); for _ in 0..steps { let last_price = prices.last().unwrap(); let dw = Normal::new(0.0, (self.dt).sqrt()).unwrap().sample(&mut rng); let drift = self.mu * self.dt; let diffusion = self.sigma * dw; let next_price = last_price * ((drift + diffusion).exp()); prices.push(next_price); } prices } } }
Event-Driven Updates
#![allow(unused)] fn main() { struct PriceOracle { gbm: GeometricBrownianMotion, current_price: f64, } impl Behavior for PriceOracle { async fn execute(&mut self, world: &World) -> Result<()> { // Update price let new_price = self.gbm.step(self.current_price); self.current_price = new_price; // Broadcast update world.broadcast(Message::PriceUpdate { asset: "ETH".to_string(), price: new_price, }).await?; Ok(()) } } }
Network Effects
Model interactions between agents:
#![allow(unused)] fn main() { struct NetworkSimulation { agents: Vec<Agent>, network: Graph<AgentId, Relationship>, } impl NetworkSimulation { async fn propagate_influence(&mut self, source: AgentId) -> Result<()> { // Find neighbors let neighbors = self.network.neighbors(source); // Influence spreads through network for neighbor in neighbors { if let Some(agent) = self.agents.get_mut(&neighbor) { agent.receive_influence(source).await?; } } Ok(()) } } }
Next Steps
- Anomaly Detection - Detecting unusual behavior
- Testing Strategies - Testing approaches
- Performance Optimization - Optimizing simulations